Crash Course on Modular Arithmetic

The Clocks

It is now 12 o'clock. What number is the hour hand on in:

- 9 hours?
- 12 hours?
- 16 hours?
- 24 hours?
- 35 hours?

We now tweak the clock (replace 12 with 0). It is now 0 o'clock. What number is the hour hand on in:

- 9 hours?
- 12 hours?
- 16 hours?
- 24 hours?
- 35 hours?
- 71 hours?

We now tweak the clock again – it now has 17 hours.

• Optional: Fill in the rest of the clock.

It is now 0 o'clock. What number is the hour hand on in:

- 9 hours?
- 12 hours?
- 16 hours?
- 24 hours?
- 35 hours?
- 71 hours?

Fill in the table:

	Remainder	and we say:
9 ÷ 12	9	9 ≡ 9 (mod 12)
12 ÷ 12	0	12 ≡ 0 (mod 12)
16 ÷ 12		16 ≡ (mod 12)
24 ÷ 12		24 ≡ (mod 12)
35 ÷ 12		35 ≡ (mod 12)
71 ÷ 12		71 ≡ (mod 12)
9 ÷ 17	9	9 ≡ 9 (mod 17)
12 ÷ 17		12 ≡ (mod 17)
16 ÷ 17		16 ≡ (mod 17)
24 ÷ 17		24 ≡ (mod 17)
35 ÷ 17		35 ≡ (mod 17)
71 ÷ 17		71 ≡ (mod 17)

Now harder:

- 7 ≡ (mod 40)
- $23 \equiv \pmod{40}$
- 161 ≡ (mod 40)

Even harder:

- $8 \equiv \pmod{55}$
- $64 \equiv \pmod{55}$
- $8^3 = 512 \equiv \pmod{55}$
- $8^4 = 4096 \equiv \pmod{55}$
- •
- $8^7 = 2097152 \equiv \pmod{55}$

What about:

• $2^{23} = 8388608 \equiv \pmod{55}$