Crash Course on Modular Arithmetic

The Clocks

It is now 12 o'clock. What number is the hour hand on in:

- 9 hours?
- 12 hours?
- 16 hours?
- 24 hours?
- 35 hours?

We now tweak the clock (replace 12 with 0). It is now 0 o'clock. What number is the hour hand on in:

- 9 hours?
- 12 hours?
- 16 hours?
- 24 hours?

- 35 hours?
- 71 hours?

We now tweak the clock again - it now has 17 hours.

- Optional: Fill in the rest of the clock.

It is now 0 o'clock. What number is the hour hand on in:

- 9 hours?
- 12 hours?

- 16 hours?
- 24 hours?
- 35 hours?
- 71 hours?

Fill in the table:

	Remainder	...and we say:
$9 \div 12$	9	$9 \equiv 9(\bmod 12)$
$12 \div 12$	0	$12 \equiv 0(\bmod 12)$
$16 \div 12$		$16 \equiv(\bmod 12)$
$24 \div 12$		$24 \equiv(\bmod 12)$
$35 \div 12$		$35 \equiv(\bmod 12)$
$71 \div 12$	9	$71 \equiv(\bmod 12)$
$9 \div 17$		$9 \equiv 9(\bmod 17)$
$12 \div 17$		$12 \equiv(\bmod 17)$
$16 \div 17$		$16 \equiv(\bmod 17)$
$24 \div 17$		$24 \equiv(\bmod 17)$
$35 \div 17$		$35 \equiv(\bmod 17)$
$71 \div 17$		$71 \equiv(\bmod 17)$

Now harder:

- $7 \equiv(\bmod 40)$
- $23 \equiv(\bmod 40)$
- $161 \equiv(\bmod 40)$

Even harder:

- $8 \equiv(\bmod 55)$
- $64 \equiv(\bmod 55)$
- $8^{3}=512 \equiv(\bmod 55)$
- $8^{4}=4096 \equiv(\bmod 55)$
-
- $8^{7}=2097152 \equiv(\bmod 55)$

What about:

- $2^{23}=8388608 \equiv(\bmod 55)$

